Abstract

Maxwell’s ring-type configuration (i.e. an N-body model where the ν = Ν − 1 bodies have equal masses and are located at the vertices of a regular ν-gon while the N-th body with a different mass is located at the center of mass of the system) has attracted special attention during the last 15 years and many aspects of it have been studied by considering Newtonian and post-Newtonian potentials (Mioc and Stavinschi 1998, 1999), homographic solutions (Arribas et al. 2007) and relative equilibrium solutions (Elmabsout 1996), etc. An equally interesting problem, known as the ring problem of (N + 1) bodies, deals with the dynamics of a small body in the combined force field produced by such a configuration. This is the problem we are dealing with in the present paper and our aim is to investigate the variations in the dynamics of the small body in the case that the central primary is also a radiating source and therefore acts on the particle with both gravitation and radiation. Based on the general outlines of Radzievskii’s model, we study the permitted and the existing trapping regions of the particle, its equilibrium locations and their parametric variations as well as the existence of focal points in the zero-velocity diagrams. The distribution of the characteristic curves of families of planar symmetric periodic orbits and their stability for various values of the radiation coefficient of the central body is additionally investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.