Abstract

The deformation and burst of liquid drops suspended in liquid dielectrics in an electric field were measured. At low electrical fields, the deformation of conducting drops into prolate spheroids showed good quantitative agreement with theoretical equations based on electrostatic theory. Dielectric drops exhibited appreciable deviation from the theory, especially in a number of system s w hen oblate spheroids were formed. The mode of electrical burst was found to show considerable variation with the electrical properties of the systems. The deformation, orientation and burst under the combined action of shear and electric fields were also studied and found to agree with a theory based upon a superposition of electric- and shear-deformation forces. The mode of break-up was found to depend on the ratio of the velocity gradient to the electric field strength, on the interfacial tension, and on the ratios of dielectric constants and of viscosities of the two liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call