Abstract

We characterize equilibrium properties and relaxation dynamics of a two-dimensional lattice containing, at each site, two particles connected by a double-well potential (dumbbell). Dumbbells are oriented in the orthogonal direction with respect to the lattice plane and interact with each other through a Lennard-Jones potential truncated at the nearest neighbor distance. We show that the system's equilibrium properties are accurately described by a two-dimensional Ising model with an appropriate coupling constant. Moreover, we characterize the coarsening kinetics by calculating the cluster size as a function of time and compare the results with Monte Carlo simulations based on Glauber or reactive dynamics rate constants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call