Abstract

We consider a Glauber dynamics reversible with respect to the two-dimensional Ising model in a finite square of sideL, in the absence of an external field and at large inverse temperature β. We first consider the gap in the spectrum of the generator of the dynamics in two different cases: with plus and open boundary conditions. We prove that, when the symmetry under global spin flip is broken by the boundary conditions, the gap is much larger than the case in which the symmetry is present. For this latter we compute exactly the asymptotics of −(1/βL) log(gap) asL→∞ and show that it coincides with the surface tension along one of the coordinate axes. As a consequence we are able to study quite precisely the large deviations in time of the magnetization and to obtain an upper bound on the spin-spin time correlation in the infinite-volume plus phase. Our results establish a connection between the dynamical large deviations and those of the equilibrium Gibbs measure studied by Shlosman in the framework of the rigorous description of the Wulff shape for the Ising model. Finally we show that, in the case of open boundary conditions, it is possible to rescale the time withL in such a way that, asL→∞, the finite-dimensional distributions of the time-rescaled magnetization converge to those of a symmetric continuous-time Markov chain on the two-state space {−m*(β),m*(β)},m*(β) being the spontaneous magnetization. Our methods rely upon a novel combination of techniques for bounding from below the gap of symmetric Markov chains on complicated graphs, developed by Jerrum and Sinclair in their Markov chain approach to hard computational problems, and the idea of introducing “block Glauber dynamics” instead of the standard single-site dynamics, in order to put in evidence more effectively the effect of the boundary conditions in the approach to equilibrium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.