Abstract
In the templated synthesis of colloidal core-shell nanoparticles, the monomer attachment growth mechanism has been widely accepted to describe the growth process of shells. In this work, by using advanced transmission electron microscope techniques, we directly observe two alternative particle attachment growth pathways that dominate the growth of Au@Ag core-shell nanocuboids. One pathway involves the in situ reduction of AgCl nanoparticles attached to Au nanorods and the subsequent epitaxial growth of the Ag shell. The other pathway involves the adherence of Ag-AgCl Janus nanoparticles to Au nanorods with random orientations, followed by nanoparticle redispersion and the resulting formation of epitaxial Ag shells on the Au nanorods. The particle-mediated growth of Ag shells is accompanied by the redispersion of surface atoms, tending to form a uniform structure. The validation of the particle attachment growth processes at the atomic scale provides a new mechanistic understanding of core-shell nanostructure synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.