Abstract
Improved understanding of pathogen survival in the stream environment is needed to enhance existing predictive models of stream pathogen populations. Further, the increasing use of thermal springs for bathing necessitates additional studies focused on not only typical streams but also thermal spring conditions, where water temperature is relatively higher than typical streams. This study was conducted to assess the survival of E. coli O157:H7 and Salmonella Typhimurium in stream water under free floating and particle-attached conditions at a range of temperature. A series of microcosm studies were conducted to determine pathogen decay rates. In bench-scale experiments, water circulation and sediment resuspension mimicked natural stream and thermal spring conditions, with continuous air flow providing aeration, constant mixing and turbulent conditions, and improved water circulation. Data on E. coli O157:H7 and Salmonella survival were subsequently used to determine first-order decay equations for calculating the rate constant and decimal reduction time for the modeled experimental conditions. Results showed that at 40 °C, the survival of particle attached E. coli O157:H7 was longer than that of particle attached Salmonella. Under free floating condition, Salmonella survived longer than E. coli O157:H7. At 50 °C, survival of particle attached E. coli O157:H7 and Salmonella was longer than that of free floating E. coli and Salmonella. At 60 °C, survival of particle attached Salmonella was longer than that of free floating Salmonella. Similarly at 60 °C, the survival of E. coli O157:H7 under particle attached condition was longer than that of the free floating condition. The findings of this study suggest that the survival of E. coli O157:H7 differs than the survival of Salmonella in stream water and thermal spring conditions, and the assumption used in previous studies to estimate survival of bacteria in stream environment could result in over/underestimation if the impact of particle attachment on pathogen survival is not accounted for.
Highlights
The abundant pathogenic bacteria in ambient water bodies such as rivers, lakes, reservoirs, coasts and estuaries is a serious worldwide concern
The survival of Salmonella was shorter than E. coli O157:H7 under particle attached condition, while under free floating condition, Salmonella survived longer than E. coli O157:H7 (Figs. 3, 4)
The results of this study suggest that the time required for pathogen reduction at a temperature could be higher when stream water has suspended particles, depending on the ambient temperature
Summary
The abundant pathogenic bacteria in ambient water bodies such as rivers, lakes, reservoirs, coasts and estuaries is a serious worldwide concern. As a form of pollution, pathogenic bacteria pose risks to human and animal health (Abia et al 2016; Eichmiller et al 2014; Pandey et al 2016; Payment et al 2000). In streams, these bacteria are reported to be in free floating condition, as well as. While previous research studied the prevalence of pathogens in typical streams, understanding of waterborne and particle attached pathogen survival under thermal spring conditions (temp > 40 °C) is limited. Prevalence of pathogens (i.e., waterborne and particle attached) in these springs has a potential to pose health risks to users
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have