Abstract

The high-energy accelerator-based simulation of both Galactic Cosmic Rays (GCR) and secondary radiation, to which astronauts will be exposed within a spacecraft in deep space, is a very relevant task for the purposes of space radiobiology. In this work, a method of simulating continuous proton, neutron, and π±-meson spectra within the habitable module of a spacecraft is described. The methods are based on a linear combination of the energy spectra of particles emitted at various angles from three different targets bombarded by a high-energy proton beam. The consecutive irradiation of targets makes it possible to create in a certain volume near the beam a summary field that is similar in characteristics to the nucleon field inside the habitable module exposed to GCR averaged over solar activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.