Abstract

AbstractSesame oil is known to be the most resistant to oxidative rancidity. Constituents of sesame oil such as sesamolin, sesamol and sesamol dimer (a possible intermediate of oxidative degradation of sesamol) were determined by high performance liquid chromatography using a reverse‐phase column. Sesamol was specifically determined in an alternative way by use of hydrogen peroxide/horseradish peroxidase. Sesamolin was relatively stable but sesamol and sesamol dimer were unstable when irradiated in benzene, and the final degradation products were identical. Whereas sesamolin was inactive, sesamol and sesamol dimer showed significant antioxidant activity in several kinds of fat and oils. Stability of Japan Pharmacopoeia sesame oil free from sesamol was relatively low; antioxidant activity of sesamol incorporated in the oil was unexpectedly low and was rapidly lost in the oil activated by oxygen. Edible sesame oil with intrinsic sesamol was highly stable. Activation of the edible oil gradually increased the sesamol content with concomitant decrease of sesamolin. High stability of edible sesame oil could not be ascribed to sesamol, but it could be explained by another powerful antioxidant(s) which might stabilize both the oil and unstable sesamol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.