Abstract

Oxidative stability of sesame oil (SO) prepared from sesame seeds roasted at 213, 230, and 247 °C for each 14, 21, or 28 min was determined at 180 °C heating condition by 2,2-diphenyl-1-picrylhydrazyl (DPPH), conjugated dienoic acid (CDA) value, headspace oxygen analysis, and profile changes of sesamol and sesamolin. As sesame seeds were roasted with longer time and higher temperature, more sesamol was found in SO. SO from sesame seeds roasted at 247 °C for 28 min had the highest oxidative stability based on the results of CDA and headspace oxygen. Absorbance of DPPH from SO roasted at 230 and 247 °C showed different patterns compared to those from SO at 213 °C during thermal oxidation. Sesamol was continuously generated with the decrease of sesamolin in SO from 230 to 247 °C while sesamol in SO from 213 °C did not increase during 180 °C heating. Higher oxidative stability of SO may be related with the continuous generation of sesamol from the degradation of sesamolin during thermal oxidation rather than the initial antioxidant content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.