Abstract

All clustering algorithms process unlabeled data and, consequently, suffer from two problems: (P1) choosing and validating the correct number of clusters and (P2) insuring that algorithmic labels correspond to meaningful physical labels. Clustering algorithms such as hard and fuzzy c-means, based on optimizing sums of squared errors objective functions, suffer from a third problem: (P3) a tendency to recommend solutions that equalize cluster populations. The semi-supervised c-means algorithms introduced in this paper attempt to overcome these problems domains where a few data from each clas can be labeled. Segmentation of magnetic resonance images is a problem of this type and we use it to illustrate the new algorithm. Our examples show that the semi-supervised approach provides MRI segmentations that are superior to ordinary fuzzy c-means and to the crisp k-nearest neighbor rule and further, that the new method ameliorates (P1)-(P3).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.