Abstract

Conventional fuzzy c-means (FCM) algorithm is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper aims to develop a Gaussian spatial FCM (gsFCM) for segmentation of brain magnetic resonance (MR) images. The proposed algorithm uses fuzzy spatial information to update fuzzy membership with a Gaussian function. Proposed method has less sensitivity to noise specifically in tissue boundaries, angles, and borders than spatial FCM (sFCM). Furthermore by the proposed algorithm a pixel which is a distinct tissue from anatomically point of view for example a tumor in preliminary stages of its appearance, has more chance to be a unique cluster. The quantitative assessment of presented FCM techniques is evaluated by conventional validity functions. Experimental results show the efficiency of proposed algorithm in segmentation of MR images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.