Abstract

In modern data science, dynamic tensor data prevail in numerous applications. An important task is to characterize the relationship between dynamic tensor datasets and external covariates. However, the tensor data are often only partially observed, rendering many existing methods inapplicable. In this article, we develop a regression model with a partially observed dynamic tensor as the response and external covariates as the predictor. We introduce the low-rankness, sparsity, and fusion structures on the regression coefficient tensor, and consider a loss function projected over the observed entries. We develop an efficient nonconvex alternating updating algorithm, and derive the finite-sample error bound of the actual estimator from each step of our optimization algorithm. Unobserved entries in the tensor response have imposed serious challenges. As a result, our proposal differs considerably in terms of estimation algorithm, regularity conditions, as well as theoretical properties, compared to the existing tensor completion or tensor response regression solutions. We illustrate the efficacy of our proposed method using simulations and two real applications, including a neuroimaging dementia study and a digital advertising study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.