Abstract

POI recommendation finds significant importance in various real-life applications, especially when meeting with location-based services, e.g., check-ins social networks. In this paper, we propose to solve POI recommendation through a novel model of dynamic tensor, which is among the first triumphs of its kind. In order to carry out timely recommendation, we predict POI by utilizing a completion algorithm based on fast low-rank tensor. Particularly, the dynamic tensor structure is complemented by the fast low-rank tensor completion algorithm so as to achieve prediction with better performance, where the parameter optimization is achieved by a pigeon-inspired heuristic algorithm. In short, our POI recommendation via the dynamic tensor method can take advantage of the intrinsic characteristics of check-ins data due to the multimode features such as current categories, subsequent categories, and temporal information as well as seasons variations are all integrated into the model. Extensive experiment results not only validate the superiority of our proposed method but also imply the application prospect in large-scale and real-time POI recommendation environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.