Abstract
Fluorescence microscopy typically suffers from aberration induced by system and sample, which could be circumvented by image deconvolution. We proposed a novel, to the best of our knowledge, Richardson-Lucy (RL) model-driven deconvolution framework to improve reconstruction performance and speed. Two kinds of neural networks within this framework were devised, which are partially interpretable compared with previous deep learning methods. We first introduce RL into deep feature space, which has superior generalizability to the convolutional neural networks (CNN). We further accelerate it with an unmatched backprojector, providing a five times faster reconstruction speed than classic RL. Our deconvolution approaches outperform both CNN and traditional methods regarding image quality for blurred images caused by out-of-focus or imaging system aberration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.