Abstract

The aim of this study is to compare a technique using Convolutional Neural Network (CNN) with the Demirjian's method for chronological age estimation of living individuals based on tooth age from panoramic radiographs. This research used 5898 panoramic X-ray images collected for diagnostic from pediatric patients aged 4–17 who sought treatment at Antalya Oral and Dental Health Hospital between 2015 and 2020. The Demirjian's method's grading was executed by researchers who possessed appropriate training and experience. In the CNN method, various CNN architectures including Alexnet, VGG16, ResNet152, DenseNet201, InceptionV3, Xception, NASNetLarge, InceptionResNetV2, and MobieNetV2 have been evaluated. Densenet201 exhibited the lowest MAE value of 0.73 years, emphasizing its superior accuracy in age estimation compared to other architectures. In most age categories, the predicted age closely matches the actual age. The most inconsistent results are observed at ages 12 and 13. The results highlight correspondence between the age predicted by CNN and the Demirjian's approach. In conclusion, the results show that the CNN method is adequate to be an alternative to the Demirjian's age estimation method. We suggest that convolutional neural network can effectively optimize the accuracy of age estimation and can be faster than traditional methods, eliminating the need for additional learning from experts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.