Abstract

The instantaneous velocity field of a circular cylinder wake is built using a PIV technique when a small amount of viscoelastic liquid is introduced through the cylinder. It is shown that the viscoelastic fluid slows down the vorticity concentration and produces a street of partially rolled-up vortices. The underlying mechanism appears very analogous to that of a surface tension in the Kelvin–Helmholtz instability. The partial roll-up is studied in terms of the Weiss determinant. This quantity is a local measurement of the spatial separation between the strain and vorticity. In the viscoelastic wake, the Weiss determinant reaches much lower values than in the Newtonian wake. This result shows that the elasticity prevents the clear separation between vorticity and strain during the roll-up process. Since the Weiss determinant is directly related to the pressure field, it suggests that elasticity can drastically modify the pressure levels even when vorticity and strain levels are unaffected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call