Abstract

A partial purification and biochemical characterization of the α-amylase from Streptomyces sp. MSC702 were carried out in this study. The optimum operational conditions for enzyme substrate reaction for amylolytic enzyme activity from the strain were evaluated. The optimum pH, temperature, and incubation period for assaying the enzyme were observed to be 5.0, 55°C, and 30 min, respectively. The extracellular extract was concentrated using ammonium sulfate precipitation. It was stable in the presence of metal ions (5 mM) such as K+, Co2+, and Mo2+, whereas Pb2+, Mn2+, Mg2+, Cu2+, Zn2+, Ba2+, Ca2+, Hg2+, Sn2+, Cr3+, Al3+, Ag+, and Fe2+ were found to have inhibitory effects. The enzyme activity was also unstable in the presence of 1% Triton X-100, 1% Tween 80, 5 mM sodium lauryl sulphate, 1% glycerol, 5 mM EDTA, and 5 mM denaturant urea. At temperature 60°C and pH 5.0, the enzyme stability was maximum. α-amylase retained 100% and 34.18% stability for 1 h and 4 h, respectively, at 60°C (pH 7.0). The enzyme exhibited a half-life of 195 min at 60°C temperature. The analysis of kinetic showed that the enzyme has K m of 2.4 mg/mL and V max of 21853.0 μmol/min/mg for soluble potato starch. The results indicate that the enzyme reflects their potentiality towards industrial utilization.

Highlights

  • Microbial amylases are among the most important hydrolytic enzymes and have been studied extensively

  • Mostly fungi and bacteria, have complex amylolytic enzyme systems that are associated with starch decomposition and are responsible for hydrolyzing starch into simple sugars

  • Application of thermophilic microorganisms to produce enzyme for industrial use is a general practice because they provide broader temperature range and higher thermostability compared to enzymes from mesophilic microorganisms

Read more

Summary

Introduction

Microbial amylases are among the most important hydrolytic enzymes and have been studied extensively This group of enzymes represents one of the three largest groups of industrial enzymes and accounts for approximately 25–33% of the world enzyme market, in second place after proteases [1]. They have numerous applications in the industrial processing of different items, namely, starch liquefaction process [2], improve flour in the baking industry, produce modified starch for paper industry [3] and as an ingredient in automatic dishwasher and laundry detergent formulations [4]. No report was published for the characterization of thermostable α-amylase isolated by thermophilic actinobacteria

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.