Abstract
Mobile edge computing (MEC) is a promising technique to enhance computation capacity at the edge of mobile networks. The joint problem of partial offloading decision, offloading scheduling, and resource allocation for MEC systems is a challenging issue. In this paper, we investigate the joint problem of partial offloading scheduling and resource allocation for MEC systems with multiple independent tasks. A partial offloading scheduling and power allocation (POSP) problem in single-user MEC systems is formulated. The goal is to minimize the weighted sum of the execution delay and energy consumption while guaranteeing the transmission power constraint of the tasks. The execution delay of tasks running at both MEC and mobile device is considered. The energy consumption of both the task computing and task data transmission is considered as well. The formulated problem is a nonconvex mixed-integer optimization problem. In order to solve the formulated problem, we propose a two-level alternation method framework based on Lagrangian dual decomposition. The task offloading decision and offloading scheduling problem, given the allocated transmission power, is solved in the upper level using flow shop scheduling theory or greedy strategy, and the suboptimal power allocation with the partial offloading decision is obtained in the lower level using convex optimization techniques. We propose iterative algorithms for the joint problem of POSP. Numerical results demonstrate that the proposed algorithms achieve near-optimal delay performance with a large energy consumption reduction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have