Abstract
We consider a large class of transformation models introduced by Gu et al. (2005) [14]. They proposed an estimation procedure for calculating the maximum partial marginal likelihood estimator (MPMLE) of regression parameters. A big advantage of MPMLE is that it avoids estimating two infinitely dimensional nuisance parameters: baseline and censoring survival functions. And they showed the validity of MPMLE through extensive simulations. In this paper, we establish the asymptotic properties of MPMLE in the general transformation models for either right or left censored data. The difficulty in establishing these asymptotic results comes from the fact that the score function derived from the partial marginal likelihood does not have ordinary independence or martingale structure. We develop a novel discretization method to resolve the difficulty. The estimation procedure is further examined using simulation studies and the analysis of the ACTG019 data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.