Abstract

Partial least squares (PLS) regression is a linear regression technique and plays an important role in dealing with high-dimensional regressors. Unfortunately, PLS is sensitive to outliers in datasets and consequentially produces a corrupted model. In this paper, we propose a robust method for PLS based on the idea of least trimmed squares (LTS), in which the objective is to minimize the sum of the smallest h squared residuals. However, solving an LTS problem is generally NP-hard. Inspired by the complementary idea of Sim and Hartley, we solve the inverse of the LTS problem instead and formulate it as a concave maximization problem, which is convex and can be solved in polynomial time. Classic PLS as well as two of the most efficient robust PLS methods, Partial Robust M (PRM) regression and RSIMPLS, are compared in this study. Results of both simulation and real data sets show the effectiveness and robustness of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.