Abstract
AbstractAn evaluation of computational performance and precision regarding the cross‐validation error of five partial least squares (PLS) algorithms (NIPALS, modified NIPALS, Kernel, SIMPLS and bidiagonal PLS), available and widely used in the literature, is presented. When dealing with large data sets, computational time is an important issue, mainly in cross‐validation and variable selection. In the present paper, the PLS algorithms are compared in terms of the run time and the relative error in the precision obtained when performing leave‐one‐out cross‐validation using simulated and real data sets. The simulated data sets were investigated through factorial and Latin square experimental designs. The evaluations were based on the number of rows, the number of columns and the number of latent variables. With respect to their performance, the results for both simulated and real data sets have shown that the differences in run time are statistically different. PLS bidiagonal is the fastest algorithm, followed by Kernel and SIMPLS. Regarding cross‐validation error, all algorithms showed similar results. However, in some situations as, for example, when many latent variables were in question, discrepancies were observed, especially with respect to SIMPLS. Copyright © 2010 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.