Abstract

Using continuous wave near-infrared spectroscopy, we measured time-resolved concentration changes of oxy-hemoglobin and deoxy-hemoglobin from the primary motor cortex following finger tapping tasks. These data were processed using partial least squares-discriminant analysis (PLS-DA) to develop a prediction model for a brain-computer interface. The tasks were composed of a series of finger tapping for 15 sec and relaxation for 45 sec. The location of the motor cortex was confirmed by the anti-phasic behavior of the oxy- and deoxy-hemoglobin changes. The results were compared with those obtained using the hidden Markov model (HMM) which has been known to produce the best prediction model. Our data imply that PLS-DA makes better judgments in determining the onset of the events than HMM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.