Abstract
In his Ph.D. thesis, Burak Ozbagci described an algorithm for computing signatures of Lefschetz fibrations where the input is a factorization of the monodromy into a product of Dehn twists. In this note, we give a reformulation of Ozbagci's algorithm which becomes much easier to implement. Our main tool is Wall's non-additivity formula applied to what we call partial fiber sum decomposition of a Lefschetz fibration over the 2-disk. We show that our algorithm works for bordered Lefschetz fibrations over disk and it yields a formula for the signature of branched covers where the branched loci are regular fibers. As an application, we give the explicit monodromy factorization of a Lefschetz fibration over disk whose total space has arbitrarily large positive signature for any positive fiber genus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.