Abstract
Partial dynamical symmetry describes a situation in which some eigenstates have a symmetry which the quantum Hamiltonian does not share. This property is shown to have a classical analogue in which some tori in phase space are associated with a symmetry which the classical Hamiltonian does not share. A local analysis in the vicinity of these special tori reveals a neighbourhood of phase space foliated by tori. This clarifies the suppression of classical chaos associated with partial dynamical symmetry. The results are used to divide the states of a mixed system into ``chaotic\'\' and ``regular\'\' classes.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have