Abstract

In the electrochemical CO2 reduction reaction (CO2 RR), it is challenging to develop a stable, well-defined catalyst model system that is able to examine the influence of the synergistic effect between adjacent catalytic active sites on the selective generation of C1 or C2 products. We have designed and synthesized a stable crystalline single-chain catalyst model system for electrochemical CO2 RR, which involves four homomorphic one-dimensional chain-like compounds (Cu-PzH, Cu-PzCl, Cu-PzBr, and Cu-PzI). The main structural difference of these four chains is the substituents of halogen atoms with different electronegativity on the Pz ligands. Consequently, different synergistic effects between bi-copper centers lead to changes in the faradic efficiency (FE :FE ). This work provides a simple and stable crystalline single-chain model system for systematically studying the influence of coordination microenvironment on catalytically active centers in the CO2 RR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.