Abstract
A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H equals the cardinality of a minimum clique-transversal of H , for every induced subgraph H of G . A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G . Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of clique-perfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem, W 4 , bull}-free, both superclasses of triangle-free graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.