Abstract

A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color is equal to the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The list of minimal forbidden induced subgraphs for the class of coordinated graphs is not known. In this paper, we present a partial result in this direction, that is, we characterize coordinated graphs by minimal forbidden induced subgraphs when the graph is either a line graph, or the complement of a forest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.