Abstract
AbstractWe study the class of 1‐perfectly orientable graphs, that is, graphs having an orientation in which every out‐neighborhood induces a tournament. 1‐perfectly orientable graphs form a common generalization of chordal graphs and circular arc graphs. Even though they can be recognized in polynomial time, little is known about their structure. In this article, we develop several results on 1‐perfectly orientable graphs. In particular, we (i) give a characterization of 1‐perfectly orientable graphs in terms of edge clique covers, (ii) identify several graph transformations preserving the class of 1‐perfectly orientable graphs, (iii) exhibit an infinite family of minimal forbidden induced minors for the class of 1‐perfectly orientable graphs, and (iv) characterize the class of 1‐perfectly orientable graphs within the classes of cographs and of cobipartite graphs. The class of 1‐perfectly orientable cobipartite graphs coincides with the class of cobipartite circular arc graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.