Abstract
Hydrophobins fulfill various physiological functions in fungal development and growth, based on their mechanism of self-assembly at hydrophilic–hydrophobic interfaces into nano-scale, amphipathic membranes. One hydrophobin with an approximate molecular weight of 15 kDa, designated Po.HYD1, was purified from aerial hyphae of Pleurotus ostreatus strain Pm039. Ultrastructures of self-assembled films formed by Po.HYD1 on hydrophobic and hydrophilic substrates were revealed by atomic force microscopy (AFM). A monomolecular adsorption layer, thickness ranging from 3.2 to 3.8 nm, was observed on the surface of highly oriented pyrolytic graphite (HOPG), while a typical rodlet layer with uniform thickness of 4.2 ± 0.1 nm formed on the mica surface. Comparison of CD spectra showed significant secondary structural changes between monomeric and self-assembled states. The spectrum of monomeric Po.HYD1 had a maximum ellipticity at 190 nm and a minimum at 209 nm, and that of assemblage showed the maximum at 195 nm and the minimum shifted to 215–218 nm. Po.HYD1 showed high surface activity, based on the dramatic drop of surface tension through self-assembly at the water–air interface. Moreover, Po.HYD1 is capable of stabilizing the emulsion consisting of water and hexane.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have