Abstract
The diversity of nicotinic cholinergic receptor (nAChR) subunits underlies the complex responses to nicotine. Mice differing in the expression of α4 and β2 subunits, which are most widely expressed in brain, were evaluated for the responses to acute nicotine administration on Y-maze crossings and rears, open-field locomotion and body temperature following chronic treatment with nicotine (0, 0.25, 1.0 and 4.0 mg/kg/h). Deletion or partial deletion of the α4, β2 or both nAChR subunits reduced the sensitivity of mice to acute nicotine administration. This reduced sensitivity was gene dose-dependent. Modification of α4 subunit expression elicited a greater reduction in sensitivity than the modification of β2 subunit expression. No measurable tolerance was observed for mice of any genotype following chronic treatment with 0.25 mg/kg/h nicotine. Modest tolerance was noted following treatment with 1.0 mg/kg/h. Greater tolerance was observed following treatment with 4.0 mg/kg/h. The extent of tolerance differed among the mice depending on genotype: wild-type (α4 and β2) developed measurable tolerance for all four tests. Heterozygotes (α4, β2 and α4/β2) developed tolerance for only Y-maze crossings and body temperature. Null mutants (α4 and β2) did not become tolerant. However, following chronic treatment with 4.0 mg/kg/h nicotine, wild type, α4 and α4 mice displayed increased Y-maze crossings following acute administration of 0.5 mg/kg nicotine that may reflect the activity of α6β2*-nAChR. These results confirm the importance of the α4 and β2 nAChR subunits in mediating acute and chronic effects of nicotine on locomotion and body temperature in the mouse.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have