Abstract

Increased enzymatic activity of receptor tyrosine kinases occurs after trans-phosphorylation of one or two tyrosines in the activation loop, located near the catalytic cleft. Partial activation of the insulin receptor's kinase domain was observed at dilute concentrations of kinase, suggesting that cis-autophosphorylation was occurring. Autophosphorylation during partial activation mapped to the juxtamembrane (JM) tyrosines and not to activation loop tyrosines. Furthermore, a double JM Tyr-to-Phe mutant kinase (JMY2F) did not undergo partial activation but catalyzed substrate phosphorylation at a very low rate. Steady-state kinetics of peptide phosphorylation were determined with and without JM autophosphorylation. The JMY2F mutant was used to prevent concurrent cis-autophosphorylation and therefore to approximate the basal state apoenzyme in the kinetic analysis. Partial activation was dominated by a decreased Michaelis constant for peptide substrate, from KM,PEP >/= 2.5 mM in the basal state to 0.2 mM in the partially activated state; the KM,ATP remained virtually unchanged at approximately 1 mM, and kcat increased from 180 to 600 min-1. The high KM,PEP suggests weak binding of peptide substrates to the apoenzyme. This was confirmed by Ki > 1 mM for peptide substrates used as inhibitors of JM autophosphorylation. The absence of comparably large changes in kcat and KM,ATP suggests that the JM region is primarily a strong barrier to the peptide entry step of trans-phosphorylation reactions. The JM region therefore functions as an intrasteric inhibitor in the basal state of the insulin receptor's kinase domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call