Abstract

Low catalytic efficiency of basal-state protein kinases often depends on activation loop residues blocking substrate access to the catalytic cleft. Using the recombinant soluble form of the insulin receptor's kinase domain (IRKD) in its unphosphorylated state, activation loop conformation was analyzed by limited proteolysis. The rate of activation loop cleavage by trypsin is slow in the apo-IRKD. Bound Mg-adenine nucleoside di- and triphosphates increased the cleavage rate with half-maximal effects observed at 0.4-0.9 mM nucleotide. Adenosine monophosphate at concentrations up to 10 mM was not bound appreciably by the IRKD and had virtually no impact on activation loop cleavage. Amino-terminal and carboxy-terminal core-flanking regions of the IRKD had no statistically significant impact on the ligand-dependent or -independent activation loop cleavages. Furthermore, the core-flanking regions did not change the inherent conformational stability of the active site or the global stability of the IRKD, as determined by guanidinium chloride-induced denaturation. These measurements indicate that the intrasterically inhibitory conformation encompasses > or =90% of the ligand-free basal state kinase. However, normal intracellular concentrations of Mg-adenine nucleotides, which are in the millimolar range, would favor a basal-state conformation of the activation loop that is more accessible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call