Abstract

Proteins display generic properties that are challenging to explain by direct selection, notably allostery, the capacity to be regulated through long-range effects, and evolvability, the capacity to adapt to new selective pressures. An evolutionary scenario is proposed where proteins acquire these two features indirectly as a by-product of their selection for a more fundamental property, exquisite discrimination, the capacity to bind discriminatively very similar ligands. Achieving this task is shown to typically require proteins to undergo a conformational change. We argue that physical and evolutionary constraints impel this change to be controlled by a group of sites extending from the binding site. Proteins can thus acquire a latent potential for allosteric regulation and evolutionary adaptation because of long-range effects that initially arise as evolutionary spandrels. This scenario accounts for the groups of conserved and coevolving residues observed in multiple sequence alignments. However, we propose that most pairs of coevolving and contacting residues inferred from such alignments have a different origin, related to thermal stability. A physical model is presented that illustrates this evolutionary scenario and its implications. The scenario can be implemented in experiments of protein evolution to directly test its predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.