Abstract
The accumulation and deposition of beta-amyloid (Aβ) are key neuropathological hallmarks of Alzheimer's disease (AD). PARP16, a Poly(ADP-ribose) polymerase, is a known tail-anchored endoplasmic reticulum (ER) transmembrane protein that transduces ER stress during pathological processes. Here, we found that PARP16 was significantly increased in the hippocampi and cortices of APPswe/PS1dE9 (APP/PS1) mice and hippocampal neuronal HT22 cells exposed to Aβ, suggesting a positive correlation between the progression of AD pathology and the overexpression of PARP16. To define the effect of PARP16 on AD progression, adeno-associated virus mediated-PARP16 knockdown was used in APP/PS1 mice to investigate the role of PARP16 in spatial memory, amyloid burden, and neuroinflammation. Knockdown of PARP16 partly attenuated impaired spatial memory, as indicated by the Morris water maze test, and decreased amyloid deposition, neuronal apoptosis, and the production of inflammatory cytokines in the brains of APP/PS1 mice. In vitro experiments demonstrated that the knockdown of PARP16 expression rescued neuronal damage and ER stress triggered by Aβ. Furthermore, we discovered that intracellular PARP16 acts as an RNA-binding protein that regulates the mRNA stability of amyloid precursor protein (APP) and protects targeted APP from degradation, thereby increasing APP levels and AD pathology. Our findings revealed an unanticipated role of PARP16 in the pathogenesis of AD, and at least in part, its association with increased APP mRNA stability.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have