Abstract
After the breakthroughs of Transformer networks in Natural Language Processing (NLP) tasks, they have led to exciting progress in visual tasks as well. Nonetheless, there has been a parallel growth in the number of parameters and the amount of training data, which led to the conclusion that Transformers are not suited for small datasets. This paper is the first to convey the feasibility of Compact Convolutional Transformers (CCT) for the prediction of Parkinsonian postural tremor based on the Bispectrum (BS) representation of IMU accelerometer time series. The dataset includes tri-axial accelerometer signals collected unobtrusively in-the-wild while subjects are on a phone call, and labelled by neurologists and signal processing experts. The BS is a noise-immune, higher-order representation that reflects a signal's deviation from Gaussianity and measures quadratic phase coupling. We performed comparative classification experiments using the CCT, pre-trained CNNs such as VGG-16 and ResNet-50, and the conventional Vision Transformer (ViT). Our model achieves competitive prediction accuracy and F1 score of 96% with only 1.016 M trainable parameters, compared to the ViT with 21.659 M trainable parameters, in a five-fold cross-validation scheme. Our model also outperforms pre-trained CNNs such as VGG-16 and ResNet-50. Furthermore, we show that the performance gains are maintained when training on a larger dataset of BS images. Our effort here is motivated by the hypothesis that data-efficient transformers outperform transfer learning using pre-trained CNNs, paving the way for promising deep learning architecture for small-scale, novel and noisy medical imaging datasets.Clinical relevance- Novel deep learning model for unobtrusive prediction of Parkinsonian Postural Tremor from Bispectrum image representation of tri-axial accelerometer signals collected in-the-wild.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.