Abstract

In this paper, we introduce the parity extension of the harmonic oscillator systems to develop the generalized Tavis-Cummings model (T-CM) based on a specific deformation of the Heisenberg algebra. We present a quantum scheme of a two-qubit system (TQS) interacting with a quantized field that is initially prepared in parity deformed coherent states (PDCSs). The dynamical features of the considered system are explored in the presence of parity deformed parameter (PDP) and time-dependent coupling (t-dc). In particular, we examine the amount of the entanglement formed in the qubit–field and qubit–qubit states. We find that the maximal amount of the entanglement may be occurred periodically during the time evolution. Finally, we investigate the influence of PDP on the Fisher information and the photon statistics of the deformed field with respect to the main parameters of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.