Abstract

The dual risk model describes the capital of a company with fixed expense rate and occasional income inflows of random size, called innovations. Parisian ruin occurs once the process stays continuously below zero for a given period. We consider the dual risk model where ruin is declared either at the first time that the reserve stays continuously below zero for an exponentially distributed time, or once it reaches a given negative threshold. We obtain the Laplace transform of the time to ruin and the Laplace transform of the time period that the process is negative. Applying a duality relationship between our risk model and the queueing model, we derive quantities related to the G/M/1 busy period, idle period and cycle maximum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.