Abstract

AbstractIn this paper we investigate the Parisian ruin problem of the general dual Lévy risk model. Unlike the usual concept of ultimate ruin, allowing the surplus level to be negative within a prespecified period indicates that the deficit at Parisian ruin is not necessarily equal to zero. Hence, we consider a Gerber–Shiu type expected discounted penalty function at the Parisian ruin and obtain an explicit expression for this function under the dual Lévy risk model. As particular cases, we calculate the Parisian ruin probability and the expected discountedkth moments of the deficit at the Parisian ruin for the compound Poisson dual risk model and a drift-diffusion model. Numerical examples are given to illustrate the behavior of Parisian ruin and the expected discounted deficit at Parisian ruin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.