Abstract
BackgroundMutations in PINK1 and parkin cause autosomal recessive Parkinson’s disease (PD). Evidence placing PINK1 and parkin in common pathways regulating multiple aspects of mitochondrial quality control is burgeoning. However, compelling evidence to causatively link specific PINK1/parkin dependent mitochondrial pathways to dopamine neuron degeneration in PD is lacking. Although PINK1 and parkin are known to regulate mitophagy, emerging data suggest that defects in mitophagy are unlikely to be of pathological relevance. Mitochondrial functions of PINK1 and parkin are also tied to their proteasomal regulation of specific substrates. In this study, we examined how PINK1/parkin mediated regulation of the pathogenic substrate PARIS impacts dopaminergic mitochondrial network homeostasis and neuronal survival in Drosophila.MethodsThe UAS-Gal4 system was employed for cell-type specific expression of the various transgenes. Effects on dopamine neuronal survival and function were assessed by anti-TH immunostaining and negative geotaxis assays. Mitochondrial effects were probed by quantitative analysis of mito-GFP labeled dopaminergic mitochondria, assessment of mitochondrial abundance in dopamine neurons isolated by Fluorescence Activated Cell Sorting (FACS) and qRT-PCR analysis of dopaminergic factors that promote mitochondrial biogenesis. Statistical analyses employed two-tailed Student’s T-test, one-way or two-way ANOVA as required and data considered significant when P < 0.05.ResultsWe show that defects in mitochondrial biogenesis drive adult onset progressive loss of dopamine neurons and motor deficits in Drosophila models of PINK1 or parkin insufficiency. Such defects result from PARIS dependent repression of dopaminergic PGC-1α and its downstream transcription factors NRF1 and TFAM that cooperatively promote mitochondrial biogenesis. Dopaminergic accumulation of human or Drosophila PARIS recapitulates these neurodegenerative phenotypes that are effectively reversed by PINK1, parkin or PGC-1α overexpression in vivo. To our knowledge, PARIS is the only co-substrate of PINK1 and parkin to specifically accumulate in the DA neurons and cause neurodegeneration and locomotor defects stemming from disrupted dopamine signaling.ConclusionsOur findings identify a highly conserved role for PINK1 and parkin in regulating mitochondrial biogenesis and promoting mitochondrial health via the PARIS/ PGC-1α axis. The Drosophila models described here effectively recapitulate the cardinal PD phenotypes and thus will facilitate identification of novel regulators of mitochondrial biogenesis for physiologically relevant therapeutic interventions.
Highlights
Mutations in PTEN Induced Kinase 1 (PINK1) and parkin cause autosomal recessive Parkinson’s disease (PD)
By employing Fluorescence Activated Cell Sorting (FACS), we further demonstrate that Parkin Interacting Substrate (PARIS) accumulation within the DA neurons leads to transcriptional repression of key mediators of mitochondrial biogenesis that is reversed by overexpression of PINK1, parkin or Peroxisome Proliferator-Activated Receptor Gamma Co-activator 1-alpha (PGC-1α)
In order to examine the physiological effects of PARIS and the PARIS mutant in vivo, the UAS- PARIS and UAS-C571A lines were crossed to actin-Gal4 driver, which exhibits strong, ubiquitous Gal4 activity throughout development [42]
Summary
Mutations in PINK1 and parkin cause autosomal recessive Parkinson’s disease (PD). Evidence placing PINK1 and parkin in common pathways regulating multiple aspects of mitochondrial quality control is burgeoning. Among the PD genes, the most compelling mitochondrial link exists for PTEN Induced Kinase 1 (PINK1) and parkin whose functions converge in common signaling pathways to regulate multiple domains of mitochondrial network homeostasis and quality control [4]. Besides the mitochondria, both PINK1 and parkin are localized to various other cellular compartments including the cytosol and exert neuroprotective functions [5,6,7,8,9,10,11,12,13]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have