Abstract

The massive scale and variability of microarray gene data creates new and challenging problems of signal extraction, gene clustering, and data mining, especially for temporal gene profiles. Many data mining methods for finding interesting gene expression patterns are based on thresholding single discriminants, e.g. the ratio of between-class to within-class variation or correlation to a template. Here a different approach is introduced for extracting information from gene microarrays. The approach is based on multiple objective optimization and we call it Pareto front analysis (PFA). This method establishes a ranking of genes according to estimated probabilities that each gene is Pareto-optimal, i.e., that it lies on the Pareto front of the multiple objective scattergram. Both a model-driven Bayesian Pareto method and a data-driven non-parametric Pareto method, based on rank-order statistics, are presented. The methods are illustrated for two gene microarray experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.