Abstract

Abstract To determine if the Ag that induces an autoimmune disease influences parental MHC haplotype molecule expression in situ in MHC heterozygotes, acute experimental allergic encephalomyelitis (EAE) was induced with different encephalitogenic peptides in (SJL/J x SWR)F1 mice. The mice were sensitized with either a synthetic peptide corresponding to mouse myelin proteolipid protein (PLP) residues 103-116 YKTTICGKGLSATV which induces EAE in SWR (H-2q), but not SJL/J (H-2s) mice or a synthetic peptide corresponding to PLP residues 139-151 HCLGKWLGHPDKF which is encephalitogenic in SJL/J but not SWR mice. Mice were killed when they were moribund or at 30 days after sensitization. Twelve of 18 F1 mice given PLP peptide 103-116 and 12 of 17 mice given PLP peptide 139-151 developed EAE within 2 to 3 wk after sensitization. Cryostat sections of brain samples from F1 and parental mice were immunostained with a panel of mAb identifying H-2s and H-2q class I and II MHC molecules. In brains of controls, class I MHC molecules were expressed on choroid plexus, endothelial cells, and microglia whereas class II MHC molecules were absent. In EAE lesions, class I and II MHC molecules were present on inflammatory and parenchymal cells, but the degree of parental haplotype molecule expression did not vary with the different peptide Ag tested. Thus, in (SJL/J x SWR)F1 mice, myelin PLP peptides 103-116 and 139-151 are co-dominant Ag with respect to clinical and histologic disease and parental haplotype MHC molecule expression. We propose a unifying hypothesis consistent with these results and previous observations of differential Ia expression in (responder x non-responder)F1 guinea pigs. We suggest that MHC molecules may bind locally derived peptide Ag in inflammatory sites and that these interactions influence levels of MHC haplotype molecules on APC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.