Abstract

The lens of the eye has a refractive index gradient that changes as the lens grows throughout life. These changes play a key role in the optics of the eye. Yet, the lens is generally simulated using a homogeneous model with an equivalent index that does not accurately represent the gradient. We present an analytical paraxial model of the gradient lens of the eye that gives the direct relation between refractive index distribution and paraxial characteristics. The model accurately simulates the changes in lens power with age and accommodation. It predicts that a decrease in equivalent index with age is associated with a flattening of the axial refractive index profile and that changes in lens power with accommodation are due primarily to changes in the axial variation of the iso-indicial curvature, consistent with Gullstrand's intracapsular theory of accommodation. The iso-indicial curvature gradient causes a shift of the principal planes compared to the homogeneous equivalent model. This shift introduces a clinically significant error in eye models that implement a homogenous lens. Our gradient lens model can be used in eye models to better predict the optics of the eye and the changes with age and accommodation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.