Abstract

We construct solutions of the paraxial and Helmholtz equations that are polynomials in their spatial variables. These are derived explicitly by using the angular spectrum method and generating functions. Paraxial polynomials have the form of homogeneous Hermite and Laguerre polynomials in Cartesian and cylindrical coordinates, respectively, analogous to heat polynomials for the diffusion equation. Nonparaxial polynomials are found by substituting monomials in the propagation variable z with reverse Bessel polynomials. These explicit analytic forms give insight into the mathematical structure of paraxially and nonparaxially propagating beams, especially in regard to the divergence of nonparaxial analogs to familiar paraxial beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.