Abstract

The development of technology of small dimensions requires a different treatment of electromagnetic beams with transverse dimensions of the order of the wavelength. These are the nonparaxial beams either in two or three spatial dimensions. Based on the Helmholtz equation, a theory of nonparaxial beam propagation in two and three dimensions is developed by the use of the Mathieu and oblate spheroidal wave functions, respectively. Mathieu wave functions are the solutions of the Helmholtz equation in planar elliptic coordinates that is a special case of the prolate spheroidal geometry. So we may simply refer to the solutions, either in two or three dimensions, as spheroidal wave functions. Besides the order mode, the spheroidal wave functions are characterized by a parameter that will be referred to as the spheroidal parameter. Divergence of the beam is characterized by choosing the numeric value of this spheroidal parameter, having a perfect control on the nonparaxial properties of the beam under study. When the spheroidal parameter is above a given threshold, the well known paraxial Laguerre-Gauss and Hermite-Gauss beams are recovered, in their respective dimensions. In other words, the spheroidal wave functions represent a unified theory that can describe electromagnetic beams in the nonparaxial regime as well as in the paraxial one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.