Abstract

The inevitable current overshoot which follows forming in filamentary RRAM devices is often perceived as a source of variability that should be minimized. This sentiment has led to efforts to curtail the overshoot by decreasing the parasitic capacitance using highly integrated 1T-1R or 1R-1R device structures. While this is readily achievable in single device test structures, it poses an intricate design constraint for memory array designs. Several papers (Degraeve et al., 2010, 2014; Fantini et al., 2013; Raghavan et al., 2013; Padovani et al., 2015) suggest that there is insufficient current to form stable filaments for small parasitic capacitances and/or low current compliance levels. Thus, the relationship between minimizing overshoot current and improved filament stability is tenuous. In this study, we utilize the forming energy-based understanding of filamentary forming to reveal that the parasitic capacitance should be optimized, rather than minimized for better filament control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.