Abstract

The reduction of parasitic currents induced on the outer conductor of electrically long coaxial cables feeding the dipoles of a collinear array is addressed. Firstly, an experimental model is presented, and its appropriateness has been verified through validation with simulations data. The above model has been used to show the effectiveness of a low-cost technique to suppress the RF currents induced on the coaxial cables running inside the metallic mast of a collinear dipole array. The proposed solution consists of a dielectric-loaded coaxial choke, realized as a shorted quarter-wavelength coaxial cylinder mounted on the external conductor of the coaxial cable, and filled with Polytetrafluoroethylene (PTFE) to reduce its physical length. The PTFE-loaded choke performance is shown through both numerical simulations and measurements on prototypes, in the 200-400 MHz frequency range. Finally, a numerical parametric analysis is performed to get some design criteria for more complex multiple-choke arrangements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.