Abstract

The authors carried out three series of experiments of the first bumper perforation and main wall cratering processes directly caused by three different types of projectiles with about 2, 4 and 7 km/s impact velocities but comparable kinetic energies, for the purpose of investigating the space debris hypervelocity impact against the single walled Whipple bumper system [1]. In the present study, a number of parametric numerical simulation analyses were performed in order to optimize the material properties of bumper and main wall materials through the comparison with the experimental results of the single target impacts by the projectiles. Then a couple of numerical calculations to simulate the whole impact process were performed and compared with the corresponding experimental results. This paper offers a numerical simulation method applicable to the space debris impact against the Whipple bumper shield, after providing the optimized material models through the comparison of the results for several single target impact tests between the experimental and parametric numerical analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.