Abstract

BackgroundBat flies (Streblidae and Nycteribiidae) are among the most specialized families of the order Diptera. Members of these two related families have an obligate ectoparasitic lifestyle on bats, and they are known disease vectors for their hosts. However, bat flies have their own ectoparasites: fungi of the order Laboulbeniales. In Europe, members of the Nycteribiidae are parasitized by four species belonging to the genus Arthrorhynchus. We carried out a systematic survey of the distribution and fungus-bat fly associations of the genus in central Europe (Hungary, Romania).ResultsWe encountered the bat fly Nycteribia pedicularia and the fungus Arthrorhynchus eucampsipodae as new country records for Hungary. The following bat-bat fly associations are for the first time reported: Nycteribia kolenatii on Miniopterus schreibersii, Myotis blythii, Myotis capaccinii and Rhinolophus ferrumequinum; Penicillidia conspicua on Myotis daubentonii; and Phthiridium biarticulatum on Myotis capaccinii. Laboulbeniales infections were found on 45 of 1,494 screened bat flies (3.0%). We report two fungal species: Arthrorhynchus eucampsipodae on Nycteribia schmidlii, and A. nycteribiae on N. schmidlii, Penicillidia conspicua, and P. dufourii. Penicillidia conspicua was infected with Laboulbeniales most frequently (25%, n = 152), followed by N. schmidlii (3.1%, n = 159) and P. dufourii (2.0%, n = 102). Laboulbeniales seem to prefer female bat fly hosts to males. We think this might be due to a combination of factors: female bat flies have a longer life span, while during pregnancy female bat flies are significantly larger than males and accumulate an excess of fat reserves. Finally, ribosomal DNA sequences for A. nycteribiae are presented.ConclusionsWe screened ectoparasitic bat flies from Hungary and Romania for the presence of ectoparasitic Laboulbeniales fungi. Arthrorhynchus eucampsipodae and A. nycteribiae were found on three species of bat flies. This study extends geographical and host ranges of both bat flies and Laboulbeniales fungi. The sequence data generated in this work contribute to molecular phylogenetic studies of the order Laboulbeniales. Our survey shows a complex network of bats, bat flies and Laboulbeniales fungi, of which the hyperparasitic fungi are rare and species-poor. Their host insects, on the other hand, are relatively abundant and diverse.

Highlights

  • Bat flies (Streblidae and Nycteribiidae) are among the most specialized families of the order Diptera

  • In RO Romania (Hungary), we found two species of bat fly-associated Laboulbeniales: A. eucampsipodae (Fig. 4a-b, d), a new country record, and A. nycteribiae (Fig. 4c, e): Arthrorhynchus eucampsipodae was recorded on Nycteribia schmidlii (4 specimens), while A. nycteribiae was found on P. conspicua (22 specimens) and N. schmidlii (1 specimen)

  • We found only Nycteribia schmidlii, Penicillidia conspicua and P. dufourii infected by Arthrorhynchus eucampsipodae and A. nycteribiae

Read more

Summary

Introduction

Bat flies (Streblidae and Nycteribiidae) are among the most specialized families of the order Diptera. The lineage has evolved numerous adaptations that uniquely and effectively expand their ecological amplitude These include flight, echolocation and a generally nocturnal lifestyle [2]. Owing in part to these unique adaptations, bats are parasitized by a plethora of arthropod lineages, including mites, ticks, bugs, fleas and flies. Among these parasites, the flies (Diptera: Hippoboscoidea: Streblidae and Nycteribiidae) are among the most conspicuous. The family Nycteribiidae contains about 275 species, occurring worldwide but generally more speciose in the Eastern Hemisphere [5]. Both families are considered tropical or subtropical in distribution, though certain species occur at northern or southern latitudes

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.