Abstract

Fish harbor a high diversity of parasites that play an important role for the ecosystem. Because these parasites have different life-cycle traits, changes in their populations or communities may provide useful information related to ecosystem health. Highly stressful conditions may reduce parasite communities or populations. However, it is not a rule since host-parasite interactions are hardly predictable. In this study, macroparasites of the fish sailfin molly (Poecilia velifera) from three sites (conserved, degraded and under restoration) located within a mangrove wetland area, in the Terminos Lagoon (southern Gulf of Mexico), were analyzed in order to determine their potential use as bioindicators. A total of 198 fish were examined for parasites. Six parasite species were found: two crustaceans (Argulus sp. and Ergasilus aff. cerastes), one trematode (Centrocestus formosanus), one monogenean (Gyrodactylus sp.) and two nematodes (Contracaecum sp. and Cuculanus sp.). There were no significant differences in the structure of parasite infracommunities as well as in prevalence and intensity of parasite populations between degraded and conserved sites. However, the site under restoration had poorer infracommunities and smaller populations of crustaceans and trematodes, which suggests that restoration efforts have not improved the ecological conditions. Based on these results, it is conjectured that parasites of P. velifera did not show useful information to provide a diagnosis related to ecosystem health. Beyond this ecological subject, the present study represents new host record for most parasite species found.

Highlights

  • Global wetland areas are highly valuable in terms of biodiversity and ecosystem services such as regulation of water quality, protection against extreme events, carbon management, and proportion of food; about 50% of them has been lost because of human impact [1, 2]

  • Evaluating wetland restoration often requires detailed long-term observations of ecological variables related to soil and water quality, as well as abundance and diversity of plants and free-living animals [4,5,6]

  • The use of aquatic parasites as indicators has been very limited despite the fact that they may provide useful information about the ecosystem health

Read more

Summary

Introduction

Global wetland areas are highly valuable in terms of biodiversity and ecosystem services such as regulation of water quality, protection against extreme events, carbon management, and proportion of food; about 50% of them has been lost because of human impact [1, 2]. Evaluating wetland restoration often requires detailed long-term observations of ecological variables related to soil (e.g. organic content) and water quality (e.g. dissolved oxygen), as well as abundance and diversity of plants and free-living animals [4,5,6]. The use of aquatic parasites as indicators has been very limited despite the fact that they may provide useful information about the ecosystem health. At community level it has been proposed that the higher the richness in parasites, the healthier the ecosystem [7, 8]. The underlying principle of parasites as ecosystem health indicators lies in their life-cycle [7, 9]. Parasite community parameters (e.g. richness) may be informative, it has been suggested that parasite population parameters are slightly more responsive to stress [12]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call