Abstract

Many parasites induce decreased host movement, known as lethargy, which can impact disease spread and the evolution of virulence. Mathematical models have investigated virulence evolution when parasites cause host death, but disease-induced decreased host movement has received relatively less attention. Here, we consider a model where, due to the within-host parasite replication rate, an infected host can become lethargic and shift from a moving to a resting state, where it can die. We find that when the lethargy and disease-induced mortality costs to the parasites are not high, then evolutionary bistability can arise, and either moderate or high virulence can evolve depending on the initial virulence and the magnitude of mutation. These results suggest, firstly, the coexistence of strains with different virulence, which may explain the transient coexistence of low- and high-pathogenic strains of avian influenza viruses, and secondly, that medical interventions to treat the symptoms of lethargy or prevent disease-induced host deaths can result in a large jump in virulence and the rapid evolution of high virulence. In complement to existing results that show bistability when hosts are heterogeneous at the population level, we show that evolutionary bistability may arise due to transmission heterogeneity at the individual host level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.